Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Hong, Yuntaoa; b; *
Affiliations: [b] Chongqing Vocational and Technical University of Mechatronics, Chongqing, China | [a] Malaysian Research Institute On Ageing of Universiti Putra Malaysia, Selangor, Malaysia
Correspondence: [*] Corresponding author. Yuntao Hong. Email: [email protected].
Abstract: Obsessive-compulsive disorder (OCD) is a chronic disease and psychosocial disorder that significantly reduces the quality of life of patients and affects their personal and social relationships. Therefore, early diagnosis of this disorder is of particular importance and has attracted the attention of researchers. In this research, new statistical differential features are used, which are suitable for EEG signals and have little computational load. Hilbert-Huang transform was applied to EEGs recorded from 26 OCD patients and 30 healthy subjects to extract instant amplitude and phase. Then, modified mean, variance, median, kurtosis and skewness were calculated from amplitude and phase data. Next, the difference of these statistical features between various pairs of EEG channels was calculated. Finally, different scenarios of feature classification were examined using the sparse nonnegative least squares classifier. The results showed that the modified mean feature calculated from the amplitude and phase of the interhemispheric channel pairs produces a high accuracy of 95.37%. The frontal lobe of the brain also created the most distinction between the two groups among other brain lobes by producing 90.52% accuracy. In addition, the features extracted from the frontal-parietal network produced the best classification accuracy (93.42%) compared to the other brain networks examined. The method proposed in this paper dramatically improves the accuracy of EEG classification of OCD patients from healthy individuals and produces much better results compared to previous machine learning techniques.
Keywords: Obsessive-compulsive disorder (OCD), Electroencephalogram (EEG), Hilbert-Huang transform, statistical features, classification
DOI: 10.3233/JIFS-237946
Journal: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-13, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]