Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Li, Xina | Hao, Miaoa | Ru, Changhaib | Wang, Yongb | Zhu, Junhuib; *
Affiliations: [a] Soochow University, Suzhou, Jiangsu, China | [b] Suzhou University of Science and Technology, Suzhou, Jiangsu, China
Correspondence: [*] Corresponding author. Junhui Zhu, Suzhou University of Science and Technology, Suzhou 215100, Jiangsu, China. E-mail: [email protected].
Abstract: With the development of science and technology, people have higher and higher requirements for robots. The application of robots in industrial production is also increasing, and there are more applications in people’s lives. Therefore, robots must have a better ability to receive and process the external environment. Therefore, visual servo system appears. Pose estimation is a major problem in the current vision system. It has great application value in positioning and navigation, target tracking and recognition, virtual reality and motion estimation. Therefore, this paper put forward the research of robot arm pose estimation and control based on machine vision. This paper first analyzed the technology of machine vision, and then carried out experiments. The accuracy and stability of the two methods for robot arm pose estimation were compared. The experimental results showed that when the noise of Kalman’s centralized data fusion method was 1 pixel, the maximum error of the X-axis angle was only 0.55, and the average error was 0.02. In Kalman’s distributed data fusion method, the average error of X-axis displacement was 0.06, and the maximum value was 17.66. In terms of accuracy, Kalman’s centralized data fusion method was better. In terms of stability, Kalman’s centralized data fusion method was also better. However, in general, these two methods had very good results, and could accurately control the position and posture of the manipulator.
Keywords: Position and attitude estimation of manipulator, machine vision, kalman filter, world coordinate system
DOI: 10.3233/JIFS-237904
Journal: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-12, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]