Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Vimala, S.a; * | Valarmathi, K.b
Affiliations: [a] Department of Artificial Intelligence and Data Science, Panimalar Engineering College, Anna University, Chennai, Tamil Nadu, India | [b] Department of Computer Science and Engineering, Panimalar Engineering College, Anna University, Chennai, Tamil Nadu, India
Correspondence: [*] Corresponding author. S. Vimala, Department of Artificial Intelligence and Data Science, Panimalar Engineering College, Anna University, Chennai-600123, Tamil Nadu, India. E-mail: [email protected].
Abstract: This study proposes a novel method using hybrid CNN-LSTM networks to measure and predict the effectiveness of speech and vision therapy. Traditional methods for evaluating therapy often rely on subjective assessments, lacking precision and efficiency. By combining CNN for visual data and MFCC for speech, alongside LSTM for temporal dependencies, the system captures dynamic changes in patients’ conditions. Pre-processing of audio and visual data enhances accuracy, and the model’s performance outperforms existing methods. This approach exhibits the potential of deep learning in monitoring patient progress effectively in speech and vision therapy, offering valuable insights for improving treatment outcomes. The proposed system’s effectiveness is assessed by various performance metrics. The suggested system’s results are compared with those of other methods already in use. The study’s findings indicate that the suggested approach is more accurate than other existing models. In conclusion, this study offers important new information on how deep learning methods are being used to track patients’ progress in speech and vision therapy.
Keywords: Monitor, speech and vision, deep learning, therapy patient, recording device, CNN-LSTM, categorization
DOI: 10.3233/JIFS-237363
Journal: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-17, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]