Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Sageengrana, S.a; * | Selvakumar, S.b
Affiliations: [a] Information Technology, Sathyabama Institute of Science and Technology, Chennai, India | [b] Computer Science and Engineering, Visvesvaraya College of Engineering Technology, Hyderabad, India
Correspondence: [*] Corresponding author. S. Sageengrana, Anna University Research Scholar, Information Technology, Sathyabama Institute of Science and Technology, Chennai, India. E-mail: [email protected].
Abstract: Distraction and fatigue are serious issues in online learning, and they directly impact educational outcomes. To achieve excellent academic achievement, students need to focus on their studies without being distracted or fatigued. Learners frequently overlook crucial information, directions, and concepts while they are passive and sleepy. They tend to miss important content, instructions, and concepts. Iris Angle Position (IAP) and electroencephalography (EEG) were used in this model to identify the behaviour of learners. Specifically, a Deep Convolutional Neural Network (DCNN) is constructed to extract IAP in order to accurately capture the learner’s facial area. EEG signals are effectively handled and sorted using deep reinforcement learning (DRL). The learners’ facial landmarks are retrieved from a frame using the dlib toolbox. Only eye landmark points from face landmarks alone are focused on in order to determine the learner’s behaviour. When the learners EEG signals and Iris positions are monitored simultaneously, it’s helpful to identify the learner’s fatigue state (LFS) and the learner’s distraction state (LDS). The Brain Vision Algorithm (BVA) uses iris position and minimal facial landmarks, along with brain activity, to properly identify the learner’s level of distraction and exhaustion. When a student is detected as being preoccupied or sleepy, an alert goes off automatically, and the educator gets performance feedback. Iris position data and brain-computer interface-based EEG signal values are utilised to identify distraction and sleepiness. Comparative tests have demonstrated that this innovative method offers fast and high-accuracy student activity detection in virtual learning settings. Applying the suggested approach to different existing classifiers yields an F-Score of 91.92%, a recall of 93.87%, and a precision of 92.37% . The results showed that the detection rates for both distracted and sleepy phases were higher than those attained with other currently used techniques.
Keywords: Drowsiness, online learning, iris position, EEG signals, distraction, brain vision algorithm
DOI: 10.3233/JIFS-237016
Journal: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-18, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]