Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Xu, Chuannuo | Cheng, Xuezhen | Wang, Yi; *
Affiliations: College of Electrical Engineering and Automation, Shandong University of Science and Technology, China
Correspondence: [*] Corresponding author. Yi Wang, College of Electrical Engineering and Automation, Shandong University of Science and Technology, China. E-mail: [email protected].
Abstract: Rolling bearings are a key component of rotating machinery and their health directly affects the safe operation of mechanical equipment. Therefore, fault diagnose for rolling bearings is very important. The fault diagnosis process of rolling bearings includes three stages: signal decomposition, feature extraction, and pattern recognition. Variational mode decomposition (VMD) can suppress end effects, but improper parameter settings will cause information losses or excessive decomposition. In this work, an improved whale optimization algorithm (IWOA) is applied to parameter settings of VMD. Correspondingly, an IWOA-VMD signal decomposition method is proposed. The decomposed signal is combined with a Laplace score method and classifier to remove the redundancy and noise in the feature set and obtain a low-dimensional sensitive feature subset. Then, aiming at the problem of the parameter settings of a least squares support vector machine (LSSVM) affecting the recognition performance and accuracy, a salp swarm algorithm (SSA) is used to globally optimize the penalty parameter and kernel width in the LSSVM to establish an SSA-LSSVM fault recognition model. This model is applied to the fault diagnosis of rolling bearings. In particular, rolling bearing fault samples at Case Western Reserve University are used to verify the method. The results indicate that the proposed method is effective and improves the speed and accuracy of fault diagnosis.
Keywords: Least squares support vector machine, rolling fault, salp swarm algorithm, variational mode decomposition, whale algorithm
DOI: 10.3233/JIFS-236532
Journal: Journal of Intelligent & Fuzzy Systems, vol. 46, no. 2, pp. 4669-4680, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]