Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Srinivasa Rao Illapu, Sankaraa; * | Mula, Aswinib | Malarowthu, Padmajac
Affiliations: [a] Andhra University College of Engineering, Visakhapatnam, Andhra Pradesh, India | [b] Gayatri Vidya Parishad College of Engineering for Women, Visakhapatnam, Andhra Pradesh, India | [c] Raghu Engineering College, Visakhapatnam, Andhra Pradesh, India
Correspondence: [*] Corresponding author. Sankara Srinivasa Rao Illapu, Andhra University College of Engineering, Visakhapatnam, Andhra Pradesh, India. E-mail: [email protected] / E-mail: [email protected].
Abstract: Wireless Body Area Network (WBAN) is an interconnection of tiny biosensors that are organized in/on several parts of the body. The developed WBAN is used to sense and transmit health-related data over the wireless medium. Energy efficiency is the primary challenges for increasing the life expectancy of the network. To address the issue of energy efficiency, one of the essential approaches i.e., the selection of an appropriate relay node is modelled as an optimization problem. In this paper, energy efficient routing optimization using Multiobjective-Energy Centric Honey Badger Optimization (M-ECHBA) is proposed to improve life expectancy. The proposed M-ECHBA is optimized by using the energy, distance, delay and node degree. Moreover, the Time Division Multiple Access (TDMA) is used to perform the node scheduling at transmission. Therefore, the M-ECHBA method is used to discover the optimal routing path for enhancing energy efficiency while minimizing the transmission delay of WBAN. The performances of the M-ECHBA are analyzed using life expectancy, dead nodes, residual energy, delay, packets received by the Base Station (BS), Packet Loss Ratio (PLR) and routing overhead. The M-ECHBA is evaluated with some classical approaches namely SIMPLE, ATTEMPT and RE-ATTEMPT. Further, this M-ECHBA is compared with the existing routing approach Novel Energy Efficient hybrid Meta-heuristic Approach (NEEMA), hybrid Particle Swarm Optimization-Simulated Annealing (hPSO-SA), Energy Balanced Routing (EBR), Threshold-based Energy-Efficient Routing Protocol for physiological Critical Data Transmission (T-EERPDCT), Clustering and Cooperative Routing Protocol (CCRP), Intelligent-Routing Algorithm for WBANs namely I-RAW, distributed energy-efficient two-hop-based clustering and routing namely DECR and Modified Power Line System (M-POLC). The dead nodes of M-ECHBA for scenario 3 at 8000 rounds are 4 which is less when compared to the dead nodes of EBR.
Keywords: Energy efficiency, life expectancy, multiobjective-energy centric honey badger optimization, time division multiple access, wireless body area network
DOI: 10.3233/JIFS-235387
Journal: Journal of Intelligent & Fuzzy Systems, vol. 46, no. 3, pp. 7077-7091, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]