Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Wang, Jinga; b | Gao, Tingtinga | Du, Hongxua | Tu, Chuanga; *
Affiliations: [a] School of Economics and Management, Yanshan University, Qinhuangdao, Hebei, China | [b] Research Center of Regional Economic Development, Yanshan University, Qinhuangdao, Hebei, China
Correspondence: [*] Corresponding author. Chuang Tu, School of Economics and Management, Yanshan University, Qinhuangdao 066004, Hebei, China. E-mail: [email protected]
Abstract: To address the issue of final delivery route planning in the community group purchase model, this study takes into full consideration logistics vehicles of different energy types. With the goal of minimizing the sum of vehicle operating costs, delivery timeliness costs, goods loss costs, and carbon emissions costs, a multi-objective optimization model for community group purchase final delivery route planning is constructed. An improved genetic algorithm with a hill-climbing algorithm is utilized to enhance adaptive genetic operators, preventing the algorithm from getting stuck in local optima and improving the solution efficiency. Finally, a case study simulation is conducted to validate the feasibility of the model and algorithm. Experimental results indicate that currently, among the three types of vehicles, fuel logistics vehicles still have an advantage in terms of vehicle usage cost. Electric logistics vehicles exhibit the poorest performance with the highest cost per hundred kilometers, but their sole advantage lies in their high energy release efficiency, enabling optimal low-carbon vehicle performance. Battery-swapping logistics vehicles perform the best in terms of carbon emissions, combining the advantages of both fuel-based and electric logistics vehicles. Therefore, battery-swapping logistics vehicles are a favorable choice for replacing fuel-based logistics vehicles in the future, offering promising prospects for future development.
Keywords: Community group-buying, the route problem of end-distribution, improved genetic algorithm, carbon emission cost
DOI: 10.3233/JIFS-234773
Journal: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-15, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]