Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Mao, Yaxin; *
Affiliations: School of Finance, Shanxi University of Finance and Economics Taiyuan, China
Correspondence: [*] Corresponding author. School of Finance, Shanxi University of Finance and Economics Taiyuan, China, 030000, E-mail: [email protected].
Abstract: The process of attempting to estimate the future prices of particular stocks by utilizing historical data and various analytical tools, including deep learning algorithms, is called stock price prediction. Insurance providers’ overall approach and decisions to manage their risks, enhance their profitability, and give value to their policyholders are referred to as the insurance strategy. It requires various things to be considered, including underwriting procedures, pricing strategies, product creation, risk analysis, claims administration, and investment choices. This study proposed optimizing an insurance strategy and predicting securities prices using a deep learning algorithm. Initially, the real stock data sources for Microsoft Corporation (MSFT) were gathered from Ping An Insurance Company of China (PAICC) and the Shanghai-based National Association of Securities Dealers Automated Quotation (NASDAQ). Normalization is the procedure used to preprocess data for the raw data. We suggest an Enhanced dragonfly-optimized deep neural network (EDODNN) with stock price forecasting and insurance. The outcomes demonstrate that the proposed model outperforms the current methodology and achieves accuracy, precision, recall, F1 score, R2, and RMSE. To display the effectiveness of the suggested system, its performance is compared to more established methods to obtain the highest level of efficiency for the research.
Keywords: Deep learning, stock price prediction, insurance strategy, microsoft corporation (MSFT), enhanced dragonfly optimized deep neural network (EDODNN)
DOI: 10.3233/JIFS-234292
Journal: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 6, pp. 10369-10379, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]