Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Chen, Jingfanga; b; *
Affiliations: [a] Hunan International Economics University, Changsha, China | [b] Stamford International University, Bangkok, Thailand
Correspondence: [*] Corresponding author. Jingfang Chen, Hunan International Economics University, Changsha, China. E-mail: [email protected].
Abstract: Existing research on Chinese text classification primarily focuses on classifying data information at different granularities, such as character, word, sentence, and chapter. However, this approach often fails to capture the semantic information embedded in these different levels of granularity. To enhance the extraction of the text’s core content, this study proposes a text classification model that incorporates an attention mechanism to fuse multi-granularity information. The model begins by constructing embedding vectors for characters, words, and sentences. Character and word vectors are generated using the Word2Vec training model, allowing the data to be converted into these respective vectors. To capture contextual semantic features, a bidirectional long and short-term memory network is employed for character and word vectors. Sentence vectors, on the other hand, are processed using the FastText model to extract the features they contain. To extract further important semantic information from the different feature vectors, they are fed into an attention mechanism layer. This layer enables the model to prioritize and emphasize the most significant information within the text. Experimental results demonstrate that the proposed model outperforms both single-granularity classification and combinations of two or more granularities. The model exhibits improved classification accuracy across three publicly available Chinese datasets.
Keywords: Multi-granularity, information fusion, text classification, aattention mechanism
DOI: 10.3233/JIFS-233388
Journal: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 7631-7645, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]