Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Parisae, Veeraswamy; * | Nagakishore Bhavanam, S.
Affiliations: Electronics and Communication Engineering, Acharya Nagarjuna University, Guntur, India
Correspondence: [*] Corresponding author. Veeraswamy Parisae, Research Scholar, Electronics and Communication Engineering, Acharya Nagarjuna University, Guntur, India. E-mail: [email protected].
Abstract: The goal of speech enhancement is to restore clean speech in noisy environments. Acoustic scenarios with low signal-to-noise ratios (SNR) make it quite challenging to extract the target speech from its noise. In the current study, to enhance noisy speech, we propose a feature recalibration based multi-scale convolutional encoder-decoder architecture with squeeze temporal convolutional networks (S-TCN) bottleneck. Each multi-scale convolutional layer in encoder and decoder is followed by time-frequency attention module (TFA). The recalibration based multi-scale 2D convolution layers are used to extract local and contextual information. Additionally, the recalibration network is equipped with a gating mechanism to control the flow of information among the layers, enabling weighting of the scaled features for noise suppression and speech retention. The fully connected layer (FC) in the bottleneck part of encoder-decoder contains a few neurons, which capture the global information from the multi-scale 2D convolution layer and reduce parameters. A S-TCN, inspired by the popular temporal convolutional neural network (TCNN), is inserted between the encoder and the decoder to model long-term dependencies in speech. The TFA is a highly efficient network component, that operates through two simultaneous attentions, one focused on time frames, and the other on frequency channels. These attentions work together to explicitly exploit positional information to create a two-dimensional attention map to effectively capture the significant time-frequency distribution of speech. Utilizing the common voice dataset, our proposed model consistently enhances results compared to the current benchmarks, as demonstrated by two extensively utilized objective measures PESQ and STOI. The proposed model shows significant improvements, with average PESQ and STOI scores increasing by 45.7% and 23.8% respectively for seen background noises, and by 43.5% and 21.4% for unseen background noises, when compared to the quality of noisy speech. Tests validate that the proposed approach outperforms numerous cutting-edge algorithms.
Keywords: TFA - time-frequency attention, S-TCN - squeeze temporal convolutional networks, MSCL - multi scale convolutional layer, FR - feature recalibration, FRMSC - feature recalibration based multi scale convolution
DOI: 10.3233/JIFS-233312
Journal: Journal of Intelligent & Fuzzy Systems, vol. 46, no. 4, pp. 10907-10907, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]