Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Ma, Junpeng; * | Liu, Feiyan | Xiao, Chenggang | Wang, Kairan | Liu, Zirui
Affiliations: Ningxia Electric Power Engineering Co., Ltd, Yinchuan, Ningxia, China
Correspondence: [*] Correspondence to: Junpeng Ma. E-mail: [email protected].
Abstract: The wake effect of wind farm can reduce the incoming wind speed at the wind turbine located in the downstream direction, resulting in the decrease of global output. WRF model adopts a three-layer two-way nested grid division scheme to simulate the upper atmospheric circulation, obtain wind speed, wind direction and other data that can truly reproduce the fluid characteristics of the regional wind farm group. The boundary conditions and solution conditions of CFD model are set, and the computational fluid dynamics model of the region is obtained. WRF is coupled with CFD, and Fitch wake model is introduced into it. By introducing the drag coefficient of wind turbine into the calculation of wind speed and turbulent kinetic energy in CFD-WRF coupling model, the wind field characteristics and wake effect of wind farm are simulated online. Monte Carlo sampling method is used to obtain random wind resource data in CFD-WRF coupling model, and then the sampled data is used to calculate the group output of wind farms, and evaluate the impact of wake effect on wind farm treatment. The experimental results show that this method can effectively analyze the characteristic data of regional wind field, and the calculation time of RANS method is about 3 s. Due to the wake effect, the overall output and efficiency of wind field will be significantly reduced.
Keywords: CFD-WRF coupling, wind resource map, wind farm group, wake effect evaluation, wind speed and direction data, fitch wake model
DOI: 10.3233/JIFS-233273
Journal: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 6, pp. 11425-11437, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]