Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Nguyen, Vy Duong Kim | Do, Phuc; *
Affiliations: University of Information Technology, Vietnam National University, Ho Chi Minh City, Vietnam
Correspondence: [*] Corresponding author. Phuc Do. E-mail: [email protected].
Abstract: People will increasingly get expedited and diverse means of accessing news as societies progress. Furthermore, there is a noticeable increase in the prevalence of incorrect and misleading information. Our research is motivated by the significant concerns regarding the detrimental impacts of disinformation on the general public, political stability, and trust in the media. The scarcity of Vietnamese-language datasets can be attributed to the predominant focus of false news detection studies on datasets only in English. Detection investigations of fake news have predominantly relied on supervised machine learning algorithms, which possess notable limitations when confronted with unclassified news articles that are either authentic or untrue. The utilization of Knowledge Graphs (KG) and Graph Convolutional Networks (GCN) holds promise in addressing the constraints of supervised machine learning algorithms. To address these problems, we propose an approach that integrates KG)into the procedure for detecting fake news. We utilize the Vietnamese Fake News Detection dataset (VFND-vietnamese-fake-news), comprising authentic and deceptive news articles from reputable Vietnamese newspapers such as vnexpress, tuoitre, and have been collected from 2018 to 2023. News articles are only labeled as real or fake after experiencing independent verification. The Glove embedding (Global Vectors for Word Representation) is employed to establish a knowledge network for the given dataset. This knowledge graph’s construction is accomplished using the Word Mover’s Distance (WMD) algorithm in conjunction with the K-nearest neighbor approach; GCN approach and the input KG train models to discern between real and fake news. With labeling half of the input dataset, the experimental findings indicate a notable level of accuracy, reaching up to 85%. Our research holds significant importance in identifying fake news, particularly within the context of the Vietnamese language.
Keywords: Fake news detection, graph convolutional network, semi-supervised, K-nearest neighbor, word mover’s distance
DOI: 10.3233/JIFS-233260
Journal: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 6, pp. 11107-11119, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]