Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Ramkumar, N.; * | Karthika Renuka, D.
Affiliations: Department of Information Technology, PSG College of Technology, Coimbatore, Tamil Nadu, India
Correspondence: [*] Corresponding author. N. Ramkumar, Research Scholar, Department of Information Technology, PSG College of Technology, Coimbatore, Tamil Nadu, India. E-mail: [email protected].
Abstract: In recent times, the rapid advancement of deep learning has led to increased interest in utilizing Electroencephalogram (EEG) signals for automatic speech recognition. However, due to the significant variation observed in EEG signals from different individuals, the field of EEG-based speech recognition faces challenges related to individual differences across subjects, which ultimately impact recognition performance. In this investigation, a novel approach is proposed for EEG-based speech recognition that combines the capabilities of Long Short Term Memory (LSTM) and Graph Attention Network (GAT). The LSTM component of the model is designed to process sequential patterns within the data, enabling it to capture temporal dependencies and extract pertinent features. On the other hand, the GAT component exploits the interconnections among data points, which may represent channels, nodes, or features, in the form of a graph. This innovative model not only delves deeper into the connection between connectivity features and thinking as well as speaking states, but also addresses the challenge of individual disparities across subjects. The experimental results showcase the effectiveness of the proposed approach. When considering the thinking state, the average accuracy for single subjects and cross-subject are 65.7% and 67.3% respectively. Similarly, for the speaking state, the average accuracies were 65.4% for single subjects and 67.4% for cross-subject conditions, all based on the KaraOne dataset. These outcomes highlight the model’s positive impact on the task of cross-subject EEG speech recognition. The motivations for conducting cross subject are real world applicability, Generalization, Adaptation and personalization and performance evaluation.
Keywords: Electroencephalography, recurrent neural network, long short term memory, gated recurrent unit, graph convolution network and graph attention network
DOI: 10.3233/JIFS-233143
Journal: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-12, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]