Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Bhuvaneswary, N.a; * | Deny, J.a | Lakshmi, A.b
Affiliations: [a] Department of ECE, Kalasalingam Academy of Research and Education, TamilNadu, India | [b] Department of ECE, Ramco Institute of Technology, TamilNadu, India
Correspondence: [*] Corresponding author. N. Bhuvaneswary, Assistant Professor, Department of ECE, Kalasalingam Academy of Research and Education, TamilNadu, India. E-mail: [email protected].
Abstract: Universal Verification Methodology (UVM) caters to an essential role in verifying the different categories of circuits ranging from small-scale chips to complex system-on-chip architectures. Constrained random simulations are an indispensable part of UVM and are often used for design verification. However, the effort and time spent manually updating and analyzing the design input constraints result in high time complexity, which typically impacts the coverage goal and fault verification ratio. To overcome this problem, this paper proposes a novel hybrid optimized verification framework that combines Reinforcement Learning (RL) and Deep Neural Networks (DNN) for automatically optimizing the input constraints, accelerating faster verification with a high coverage ratio. The proposed algorithm uses reinforcement learning to generate all possible vector sequences needed for testing the target devices and corresponding outputs of the target devices and potential design errors. Furthermore, the framework intends to use high-speed deep-feedforward neural networks to automate and optimize the constraints during runtime. The proposed framework was developed using Python interfaced with the TCL environment. Extensive experimentation was carried out using several circuits, including multi-core designs, and performance parameters such as coverage accuracy, speed, and computational complexity were calculated and analyzed. The experiment demonstrated the proposed framework remarkable results, showing its superior performance in faster coverage and fewer misclassification errors. Furthermore, the proposed framework is compared with existing verification frameworks and other classical learning models. Good results demonstrate that the proposed framework increases the 4.5x speed for verifying multi-core designs and the 99% accuracy of detection and coverage.
Keywords: Universal verification methodology, reinforcement learning, deep feed forward neural network, multi-core designs
DOI: 10.3233/JIFS-232132
Journal: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 3, pp. 3715-3728, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]