Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Guo, An | Sun, Kaiqiong; * | Wang, Meng
Affiliations: School of Mathematics and Computer Science, Wuhan Polytechnic University, Wuhan, China
Correspondence: [*] Corresponding author. Kaiqiong Sun, School of Mathematics and Computer Science, Wuhan Polytechnic University, Wuhan 430023, China. E-mail: [email protected].
Abstract: While deep learning based object detection methods have achieved high accuracy in fruit detection, they rely on large labeled datasets to train the model and assume that the training and test samples come from the same domain. This paper proposes a cross-domain fruit detection method with image and feature alignments. It first converts the source domain image into the target domain through an attention-guided generative adversarial network to achieve the image-level alignment. Then, the knowledge distillation with mean teacher model is fused in the yolov5 network to achieve the feature alignment between the source and target domains. A contextual aggregation module similar to a self-attention mechanism is added to the detection network to improve the cross-domain feature learning by learning global features. A source domain (orange) and two target domain (tomato and apple) datasets are used for the evaluation of the proposed method. The recognition accuracy on the tomato and apple datasets are 87.2% and 89.9%, respectively, with an improvement of 10.3% and 2.4%, respectively, compared to existing methods on the same datasets.
Keywords: Domain adaptation, deep learning, knowledge distillation, fruit detection
DOI: 10.3233/JIFS-232104
Journal: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 4, pp. 5837-5851, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]