Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Zhang, Yanyua; b | Liu, Chunyanga; b | Rao, Xinpenga; b | Zhang, Xibenga; b; * | Zhou, Yia; b
Affiliations: [a] School of Artificial Intelligence, Henan University, Zhengzhou, China | [b] International Joint Research Laboratory for Cooperative Vehicular Networks of Henan, Zhengzhou, China
Correspondence: [*] Corresponding author. Xibeng Zhang, E-mail: [email protected].
Abstract: Accurate forecasting of the load of electric vehicle (EV) charging stations is critical for EV users to choose the optimal charging stations and ensure the safe and efficient operation of the power grid. The charging load of different charging stations in the same area is interrelated. However, forecasting the charging load of individual charging station using traditional time series methods is insufficient. To fully consider the spatial-temporal correlation between charging stations, this paper proposes a new charging load forecasting framework based on the Adaptive Spatial-temporal Graph Neural Network with Transformer (ASTNet-T). First, an adaptive graph is constructed based on the spatial relationship and historical information between charging stations, and the local spatial-temporal dependencies hidden therein are captured by the spatio-temporal convolutional network. Then, a Transformer network is introduced to capture the global spatial-temporal dependencies of charging loads and predict the future multilevel charging loads of charging stations. Finally, extensive experiments are conducted on two real-world charging load datasets. The effectiveness and robustness of the proposed algorithm are verified by experiments. In the Dundee City dataset, the MAE, MAPE, and RMSE values of the proposed model are improved by approximately 71%, 90%, and 67%, respectively, compared to the suboptimal baseline model, demonstrating that the proposed algorithm significantly improves the accuracy of load forecasting.
Keywords: Electric vehicle, load forecasting, graph convolutional network, temporal convolutional network, transformer
DOI: 10.3233/JIFS-231775
Journal: Journal of Intelligent & Fuzzy Systems, vol. 46, no. 1, pp. 821-836, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]