Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Sakthi, K.a; * | Nirmal Kumar, P.b
Affiliations: [a] Department of ECE, Saveetha Engineering College, Chennai, Tamilnadu, India | [b] Department of ECE, Anna University, Chennai, Tamilnadu, India
Correspondence: [*] Corresponding author. K. Sakthi, Department of ECE, Saveetha Engineering College, Chennai, Tamilnadu, India. E-mail: [email protected].
Abstract: Rapid technological advances and network progress has occurred in recent decades, as has the global growth of services via the Internet. Consequently, piracy has become more prevalent, and many modern systems have been infiltrated, making it vital to build information security tools to identify new threats. An intrusion detection system (IDS) is a critical information security technology that detects network fluctuations with the help of machine learning (ML) and deep learning (DL) approaches. However, conventional techniques could be more effective in dealing with advanced attacks. So, this paper proposes an efficient DL approach for network intrusion detection (NID) using an optimal weight-based deep neural network (OWDNN). The network traffic data was initially collected from three openly available datasets: NSL-KDD, CSE-CIC-IDS2018 and UNSW-NB15. Then preprocessing was carried out on the collected data based on missing values imputation, one-hot encoding, and normalization. After that, the data under-sampling process is performed using the butterfly-optimized k-means clustering (BOKMC) algorithm to balance the unbalanced dataset. The relevant features from the balanced dataset are selected using inception version 3 with multi-head attention (IV3MHA) mechanism to reduce the computation burden of the classifier. After that, the dimensionality of the selected feature is reduced based on principal component analysis (PCA). Finally, the classification is done using OWDNN, which classifies the network traffic as normal and anomalous. Experiments on NSL-KDD, CSE-CIC-IDS2018 and UNSW-NB15 datasets show that the OWDNN performs better than the other ID methods.
Keywords: Intrusion detection system, deep learning, dimensionality reduction, butterfly optimization, k-means clustering, inception v3, multi head attention, deep neural network
DOI: 10.3233/JIFS-231758
Journal: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 3, pp. 5123-5140, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]