Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Chen, Liang-Chinga | Chang, Kuei-Hub; *
Affiliations: [a] Department of Foreign Languages, R.O.C. Military Academy, Kaohsiung, Taiwan | [b] Department of Management Sciences, R.O.C. Military Academy, Kaohsiung, Taiwan
Correspondence: [*] Corresponding author. Kuei-Hu Chang, Department of Management Sciences, R.O.C. Military Academy, Kaohsiung 830, Taiwan. E-mail: [email protected].
Abstract: Within the new era of artificial intelligence (AI), education industry should develop in the direction of intelligence and digitalization. For evaluating learners’ academic performances, English high-stakes test is not only a mere means for measuring what English as a Foreign Language (EFL) stakeholders know or do not know but also likely to bring life-changing consequences. Hence, effective test preparation for English high-stakes test is crucial for those who futures depend on attaining a particular score. However, traditional corpus-based approaches cannot simultaneously take words’ frequency and range variables into consideration when evaluating their importance level, which makes the word sorting results inaccurate. Thus, to effectively and accurately extract critical words among English high-stakes test for enhancing EFL stakeholders’ test performance, this paper integrates a corpus-based approach and a revised Importance-Performance Analysis (IPA) method to develop a novel frequency-range analysis (FRA) method. Taiwan College Entrance Exam of English Subject (TCEEES) from the year of 2001 to 2022 are adopted as an empirical case of English high stake test and the target corpus for verification. Results indicate that the critical words evaluated by FRA method are concentrated on Quadrant I including 1,576 word types that account for over 60% running words of TCEEES corpus. After compared with the three traditional corpus-based approaches and the Term Frequency-Inverse Document Frequency (TF-IDF) method, the significant contributions include: (1) the FRA method can use a machine-based function words elimination technique to enhance the efficiency; (2) the FRA method can simultaneously take words’ frequency and range variables into consideration; (3) the FRA method can effectively conduct cluster analysis by categorizing the words into the four quadrants that based on their relative importance level. The results will give EFL stakeholders a clearer picture of how to allocate their learning time and education resources into critical words acquisition.
Keywords: Artificial intelligence (AI), English high-stakes test, corpus-based approach, Importance-Performance Analysis (IPA) method, Term Frequency-Inverse Document Frequency (TF-IDF) method, frequency-range analysis (FRA) method
DOI: 10.3233/JIFS-231539
Journal: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 6, pp. 9605-9620, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]