Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Sri Geetha, M.a; * | Grace Selvarani, A.b
Affiliations: [a] Department of Artificial Intelligence and Data Science, Kumaraguru College of Technology, Coimbatore | [b] Department of Computer Science and Engineering, Sri Ramakrishna Engineering College, Coimbatore
Correspondence: [*] Corresponding author. M. Sri Geetha, Research Scholar, Department of Computer Science and Engineering, Sri Ramakrishna Engineering College, Coimbatore-641022. India. E-mail: [email protected].
Abstract: Breast cancer is responsible for the deaths of hundreds of women every year. The manual identification of breast cancer has more difficulties, and have the possibility of error. Many imaging approaches are being researched for their potential to identify breast cancer (BC). Incorrect identification might sometimes result in unneeded therapy and diagnosis. Because of this, accurate identification of breast cancer may save a great number of patients from needing unneeded surgery and biopsies. Deep learning’s (DL) performance in the processing of medical images has substantially increased as a result of recent breakthroughs in the sector. Because of their improved capacity to anticipate outcomes, deep learning algorithms are able to reliably detect BC from ultrasound pictures. Transfer learning is a kind of machine learning that reuses knowledge representations from public models that were built with the use of large-scale datasets. Transfer learning has been shown to often result in overfitting. The primary purpose of this research is to develop and provide suggestions for a deep learning model that is effective and reliable in the detection and classification of breast cancer. A tissue biopsy is obtained from the suspicious region in order to ascertain the nature of a breast tumor and whether or not it is cancerous. Tumors may take any of these forms. When the images have been reconstructed with the help of a variational autoencoder (VAE) and a denoising variational autoencoder (DVAE), a convolutional neural network (CNN) model is used. This will be the case because it opens up a new area of the field to be investigated. The histological subtypes of breast cancer are used in conjunction with the degree of differentiation to execute the task of breast cancer categorization.
Keywords: Medical image classification, disease detection, deep learning, breast cancer, convolutional neural network (CNN), variationalautoencoder, histopathology image
DOI: 10.3233/JIFS-231345
Journal: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 6, pp. 10281-10294, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]