Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Zhang, Qian; * | Wang, Jianguo; *
Affiliations: School of Computer Science and Engineering, Xi’an Technology University, Xi’an, China
Correspondence: [*] Corresponding author. Qian Zhang and Jianguo Wang, School of Computer Science and Engineering, Xi’an Technology University, Xi’an, China. E-mails: [email protected] and [email protected].
Abstract: Association rule algorithm has always been a research hotspot in the field of data mining, in the context of today’s big data era, in order to efficiently obtain association rules and effectively update them, based on the original fast update pruning (FUP) algorithm, an association rule incremental update algorithm (FBSCM) based on sorting compression matrix is proposed to solve the shortcomings of frequent scanning of transaction datasets. Firstly, The algorithm maps the transaction dataset as a Boolean matrix, and changes the storage mode of the matrix(that is, adding two columns and a row vector); Secondly, the matrix is compressed many times during the generation of frequent k-itemset; After that, the items in the matrix are sorted incrementally according to the support degree of the itemset; Finally, the original string comparison operation is replaced by the vector product of each column of the matrix. Experimental results and analysis show that the FBSCM algorithm has higher temporal performance than the traditional FUP algorithm in different incremental dataset sizes, different minimum support thresholds and different feature datasets, especially when the incremental transaction volume is large or the minimum support degree is small.
Keywords: FUP algorithm, boolean matrix, matrix compression, incremental association rule mining
DOI: 10.3233/JIFS-231252
Journal: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 2, pp. 2145-2156, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]