Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Radhakrishnan, P.; * | Senthilkumar, G.
Affiliations: Department of Computational Intelligence, SRM Institute of Science and Technology, Kattankulathur Campus, Kattankulathur, Chennai, Tamil Nadu, India
Correspondence: [*] Corresponding author. P. Radhakrishnan. E-mail: [email protected].
Note: [1] Nesterov-accelerated Adaptive Moment Estimation NADAM-LSTM based Text Summarization.
Abstract: Automatic text summarization is the task of creating concise and fluent summaries without human intervention while preserving the meaning of the original text document. To increase the readability of the languages, a summary should be generated. In this paper, a novel Nesterov-accelerated Adaptive Moment Estimation Optimization based on Long Short-Term Memory [NADAM-LSTM] has been proposed to summarize the text. The proposed NADAM-LSTM model involves three stages namely pre-processing, summary generation, and parameter tuning. Initially, the Giga word Corpus dataset is pre-processed using Tokenization, Word Removal, Stemming, Lemmatization, and Normalization for removing irrelevant data. In the summary generation phase, the text is converted to the word-to-vector method. Further, the text is fed to LSTM to summarize the text. The parameter of the LSTM is then tuned using NADAM Optimization. The performance analysis of the proposed NADAM-LSTM is calculated based on parameters like accuracy, specificity, Recall, Precision, and F1 score. The suggested NADAM-LSTM achieves an accuracy range of 99.5%. The result illustrates that the proposed NADAM-LSTM enhances the overall accuracy better than 12%, 2.5%, and 1.5% in BERT, CNN-LSTM, and RNN respectively.
Keywords: Text summarization, automatic text summarization, Nesterov-accelerated Adaptive Moment Estimation, Long Short-Term Memory
DOI: 10.3233/JIFS-224299
Journal: Journal of Intelligent & Fuzzy Systems, vol. 46, no. 3, pp. 6781-6793, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]