Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Arivalagan, Divyaa; * | Bhoopathy Began, K.a | Ewins Pon Pushpa, S.b | Rajendran, Kiruthigaa
Affiliations: [a] Department of Electronics Engineering, Madras Institute of Technology, Anna University, Chennai, Tamilnadu, India | [b] Department of Electronics and Communication Engineering, College of Engineering Guindy, Anna University, Chennai, Tamilnadu, India
Correspondence: [*] Corresponding author. Divya Arivalagan, Department of Electronics Engineering, Madras Institute of Technology, Anna University, Chennai, Tamilnadu, India. E-mail: [email protected].
Abstract: Fingerprints are widely used as effective personal authentication systems, because they constitute unique, robust, and risk-free evidence. Fingerprinting techniques refer to biometric procedures used for identifying individuals based on their physical characteristics. A fingerprint image contains ridges and valleys forming a directionally-oriented pattern. The robustness of the fingerprint authentication technique determines the quality of the fingerprint image. This study proposed an intelligent 12-layered Convolutional Neural Network (CNN) model using Deep learning (DL) for gender determination based on fingerprints. Further, the study compared the performance of this model to existing state-of-the-art methods. The primary goal of this study was to reduce the number of comparisons within a large database obtained from automatic fingerprint recognition systems. The classification process was found to be swifter and more accurate when analysis of the DL algorithm was performed. With reference to the criteria of precision, recall, and accuracy evaluation during classification, this proposed 12-layered CNN model outperformed the Residual Neural Network with 50 Layers (ResNet-50) and Dense Convolutional Network with 201 Layers (DenseNet-201) models. The accuracies obtained were 97.0%, 95.8%, 98.0%, and 96.8% for female-left, female-right, male-left, and male-right classes respectively, while achieving an overall accuracy of 94.0%.
Keywords: Fingerprint image, intelligent system, authentication, convolutional neural network, deep learning algorithm, precision, recall, accuracy, DenseNet201, ResNet-50
DOI: 10.3233/JIFS-224284
Journal: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 2, pp. 2685-2706, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]