Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Shi, Huanyu; * | Li, Ning | Liu, Yinuo
Affiliations: College of Art, Baoding University of Technology, Baoding, China
Correspondence: [*] Corresponding author. Huanyu Shi, College of Art, Baoding University of Technology, Baoding 071000, China. E-mail: [email protected].
Abstract: In the wake of the wide promotion of 5G network, the era of super-high-speed networks and the Internet of Everything is approaching. Combining digital technologies led by 5G with landscape architecture has become an important way for the sustainable development of garden ecology. In order to achieve refined management of gardens and improve the accuracy and consistency of garden environmental data monitoring, this study constructs a new IoT sensor multi data fusion algorithm model. Considering the high redundancy and large error data collected by multiple sensors, this paper proposes a multi data fusion algorithm based on adaptive trust estimation and improved D-S evidence theory. The experimental data demonstrates that matched with IGA-BP, algorithm in this paper obtained the largest fitness value and the fastest convergence speed in three sensor application scenarios with different numbers of nodes. The lowest values were obtained in terms of unit energy consumption and network latency indicators. In the monitoring experiment for environmental data of landscape architecture, the algorithm obtained lower relative error and mean square error than IGA-BP in four environmental parameters of temperature, humidity, light intensity and carbon dioxide concentration. Therefore, the algorithm is effective in real-time monitoring of landscape garden environmental data, and can provide decision-making data for garden management as a reference.
Keywords: 5G, sensor, multi-data fusion algorithm, internet of things, landscape architecture
DOI: 10.3233/JIFS-223961
Journal: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 3, pp. 4415-4425, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]