Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Jadhav, Ranjana S.; | Dhore, Manikrao Laxmanrao
Affiliations: Department of Computer Engineering Vishwakarma Institute of Technology, Pune, Maharashtra, India
Correspondence: [*] Corresponding author. Ranjana S. Jadhav, Research Scholar, Department of Computer Engineering Vishwakarma Institute of Technology, 666, Upper IndiraNagar, Bibwewadi, Pune, Maharashtra, India. E-mail: [email protected].
Abstract: Transliteration is phonetically translating a language’s words into an international or non-native screenplay. The machine translation process now plays an essential role in scholarly research. The most crucial complement criterion of the English translation system is preserving the phonetic qualities of the language specification after English translation in the chosen language. However, a suitable bilingual text corpus is necessary for statistical models to attain improved transliteration accuracy. Marathi-to-English direct machine translation is done through a cross-language information retrieval system using the CNN classifier model in this proposed research. The proposed method considers a sequence labelling issue brought on by the split transliteration units used in the process. All half-consonant clusters in the Devanagari script are effectively mapped as half-consonant “a” s and labelled using the Modified Intermediate Phonetic Code (MIPC). After generating the phonetic units for each feature in the base and aim languages, the weight is assigned to a phonetic unit in both languages, and individual phonetic unit probabilities are computed. If the probability is zero, then segments are established and recalculated for each segment based on the target phonetic unit location in the word. Therefore, the proposed approach classifies the required phonetic unit with a high accuracy rate.
Keywords: Machine Transliteration, phonetic unit, Devanagari, syllabification, N-grams, CNN classifier model
DOI: 10.3233/JIFS-223591
Journal: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 2, pp. 3025-3037, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]