Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Zhang, Ruifan | Wang, Hao | Yang, Gongping; *
Affiliations: School of Software, Shandong University, Jinan, China
Correspondence: [*] Corresponding author. Gongping Yang, School of Software, Shandong University, 250101, Jinan. E-mail: [email protected].
Abstract: Embedding similarity-based methods obtained good results in unsupervised anomaly detection (AD). This kind of method usually used feature vectors from a model pre-trained by ImageNet to calculate scores by measuring the similarity between test samples and normal samples. Ultimately, anomalous regions are localized based on the scores obtained. However, this strategy may lead to a lack of sufficient adaptability of the extracted features to the detection of anomalous patterns for industrial anomaly detection tasks. To alleviate this problem, we design a novel anomaly detection framework, MFFA, which includes a pseudo sample generation (PSG) block, a local-global feature fusion perception (LGFFP) block and an anomaly map compensation (AMC) block. The PSG block can make the pre-trained model more suitable for real-world anomaly detection tasks by combining the CutPaste augmentation. The LGFFP block aggregates shallow and deep features on different patches and inputs them to CaiT (Class-attention in image Transformers) to guide self-attention, effectively interacting local and global information between different patches, and the AMC block can compensate each other for the two anomaly maps generated by the nearest neighbor search and multivariate Gaussian fitting, improving the accuracy of anomaly detection and localization. In experiments, MVTec AD dataset is used to verify the generalization ability of the proposed method in various real-world applications. It achieves over 99.1% AUROCs in detection and 98.4% AUROCs in localization, respectively.
Keywords: Anomaly detection, pseudo sample, feature fusion, transformer, anomaly map compensation
DOI: 10.3233/JIFS-222595
Journal: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 5, pp. 7195-7210, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]