Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Baqer, Ihsan A. | Jaber, Alaa Abdulhady; * | Soud, Wafa A.
Affiliations: Mechanical Engineering Department, University of Technology-Iraq, Baghdad, Iraq
Correspondence: [*] Corresponding author. Alaa Abdulhady Jaber, Mechanical Engineering Department, University of Technology-Iraq, Baghdad, Iraq. E-mail: [email protected].
Abstract: Belt drive contamination is considered one of the most common failure modes that could be developed in the belts due to harsh operation conditions, high humidity, and sunlight exposure, reducing the belt’s performance. If the belt failure has not been detected early, a sudden shutdown may happen, producing safety and economic consequences. However, most maintenance personnel use their senses of sight, hearing, smell, and touch to identify the cause of the problem while diagnosing a belt drive condition. Hence, this research involves developing an intelligent contamination status detection system based on vibration signal analysis for a pulley-belt rotating system. Time-domain signal analysis was employed to extract some suggestive features such as the root mean square, kurtosis, and skewness from the vibration data. An artificial neural network (ANN) model was built to detect the simulated different operating conditions. The vibration data was gathered with the help of two MEMS accelerometers (ADXL335) interfaced with an NI USB-6009 data acquisition device. A signal capture, analysis, and feature extraction system was developed using Matlab Simulink. The simulated operating conditions include clean, wet, and powder-contaminated belts. The results showed that the designed system could identify the pulley-belt operation conditions with 100% overall accuracy.
Keywords: Condition monitoring, fault diagnosis, preventive maintenance, time-domain signal analysis, machine learning
DOI: 10.3233/JIFS-222438
Journal: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 4, pp. 6629-6643, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]