Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Jagadish Kumar, N.a; * | Balasubramanian, C.b
Affiliations: [a] Department of Information Technology, Velammal Institute of Technology, Chennai, Tamil Nadu, India | [b] Department of Computer Science and Engineering, P.S.R. Engineering College, Sivakasi, Tamil Nadu, India
Correspondence: [*] Corresponding author. N. Jagadish Kumar, Department of Information Technology, Velammal Institute of Technology, Chennai, Tamil Nadu, 601204, India. E-mails: [email protected], [email protected].
Abstract: In a cloud computing system, resources can be accessed at a minimal cost whenever users raise request needs. The primary goal of cloud computing is to provide cost-efficiency of service scheduling to clients fast while using the least number of resources. Cloud Service Provisioning (CSP) can match consumer needs with minimal use of resources. There are several metaheuristic optimization algorithms have been developed in the field of CSP resource minimization and adequate computing resources are required to ensure client satisfaction. However, it performs poorly under a variety of practical constraints, including a vast amount of user data, smart filtering to boost user search, and slow service delivery. In this regard, propose a Black Widow Optimization (BWO) algorithm that reduces cloud service costs while ensuring that all resources are devoted only to end-user needs. It is a nature-inspired metaheuristic algorithm that involved a multi-criterion correlation that is used to identify the relationship between user requirements and available services and thereby, it is defined as an MS-BWO algorithm. Thus finds the most efficient virtual space allocation in a cloud environment. It uses a service provisioning dataset with metrics like energy usage, bandwidth utilization rate, computational cost, and memory consumption. In terms of data performance, the proposed MS-BWO outperforms exceed than other existing state-of-art-algorithms including Work-load aware Autonomic Resource Management Scheme(WARMS), Fuzzy Clustering Load balancer(FCL), Agent-based Automated Service Composition (A2SC) and Load Balancing Resource Clustering (LBRC), and an autonomic approach for resource provisioning (AARP)
Keywords: Cloud service provisioning, Resource utilization, Virtual machine, Metaheuristic black widow optimization
DOI: 10.3233/JIFS-222048
Journal: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 3, pp. 4397-4417, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]