Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Ramkumar, N.a; * | Sadasivam, G. Sudhab | Renuka, D. Karthikaa
Affiliations: [a] Department of Information Technology, PSG Collegeof Technology, Coimbatore, India | [b] Department of Computer Science, PSG College of Technology, Coimbatore, India
Correspondence: [*] Corresponding author. N. Ramkumar, Department of Information Technology, PSG College of Technology, Coimbatore, India E-mail: [email protected].
Abstract: Multimodal analysis focuses on the internal and external manifestations of cancer cells to provide physicians, oncologists and surgeons with timely information on personalized diagnosis and treatment for patients. Decision fusion in multimodal analysis reduces manual intervention, and improves classification accuracy facilitating doctors to make quick decisions. Genetic characteristics extracted on biopsies do not, however, provide details on adjacent cells. Images can only provide external observable details of cancer cells. While mammograms can detect breast cancer, region wise details can be obtained from ultrasound images. Hence, different types of imaging techniques are used. Features are extracted using the SelectKbest method in the Wisconsin Breast Cancer, Clinical and gene expression datasets. The features are extracted using Gray Level Co-occurrence Matrix from Histology, Mammogram and Sonogram images. For image datasets, the Convolution Neural Network (CNN) is used as a classifier. The combined features from clinical, gene expression and image datasets are used to train an Integrated Stacking Classifier. The integrated multimodal system’s effectiveness is shown by experimental findings.
Keywords: Convolution neural networks, multimodal analysis, gray level co-occurrence matrix, histopathological, mammogram, sonogram and integrated stacking classifier
DOI: 10.3233/JIFS-220633
Journal: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 2, pp. 2863-2880, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]