Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Anu Shalini, T. | Sri Revathi, B.; *
Affiliations: School of Electrical Engineering, Vellore Instituteof Technology, Chennai Campus, Chennai, India
Correspondence: [*] Corresponding author. B. Sri Revathi, School of Electrical Engineering, Vellore Institute of Technology, Chennai Campus, Chennai, India. E-mail: [email protected].
Abstract: This paper presents the design of a grid connected hybrid system using modified Z source converter, bidirectional converter and battery storage system. The input sources for the proposed system are fed from solar and wind power systems. A modified high gain switched Z source converter is designed for supplying constant DC power to the DC-link of the inverter. A hybrid deep learning (HDL) algorithm (CNN-BiLSTM) is proposed for predicting the output power from the hybrid systems. The HDL method and the PI controller generates pulses to the proposed system. The superiority of the proposed hybrid DL method is compared with the conventional DL methods like CNN, LSTM, BiLSTM methods and the performance of the hybrid system is validated. A closed loop control framework is implemented for the proposed grid integrated hybrid system and its performance is observed by implementing the PI, Fuzzy and ANN controllers. A 1.5Kw hybrid system is designed in MATLAB/SIMULINK software and the results are validated. A prototype of the proposed system is developed in the laboratory and experimental results are obtained from it. From the simulation and experimental results, it is observed that the ANN controller with SVPWM (Space vector Pulse width Modulation) gives a THD (Total harmonic distortion) of 2.2% which is within the IEEE 519 standard. Therefore, from the results it is identified that the ANN-SVPWM method injects less harmonic currents into the grid than the other two controllers.
Keywords: Power forecasting, timeseries forecasting, bidirectional long short-term memory, convolution neural network, renewable power generation
DOI: 10.3233/JIFS-220307
Journal: Journal of Intelligent & Fuzzy Systems, vol. 43, no. 6, pp. 8247-8262, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]