Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Muppavarapu, Vamsee | Ramesh, Gowtham; *
Affiliations: Department of Computer Science and Engineering, Amrita School of Computing, Coimbatore, Amrita Vishwa Vidyapeetham, India
Correspondence: [*] Corresponding author. Gowtham Ramesh. E-mail [email protected].
Abstract: The W3C linked building data group is working on modeling the information for integrating building information with building life cycle data using Semantic Web technologies. The community has proposed a set of semantic models such as ifcOWL and Building Topology Ontology (BOT), to model various applications across Architecture, Engineering, Construction, and Operation (AECO) domain. On the other hand, the Semantic Web of Things (SWoT) group proposed standard semantic models such as M3-lite and BOSH ontologies for describing the sensor networks, observations, and sensor measurements. Both the aforementioned domains have their own siloed applications and with the evolution of the smart home domain, there is a need to combine the knowledge of building information with the sensor knowledge to develop cross-domain applications. However, in order to develop such downstream applications leveraging advantages from both domains requires interoperable knowledge. This paper proposes an interoperable ontology, Building Topology Ontology for Smart Homes (BOTSH), with the aim of aligning the building domain with sensors domain semantic models. The BOTSH ontology facilitates capturing knowledge from both domains and helps in developing cross-domain applications. The potential of the proposed model was demonstrated using a real-life building model based on the competency questions framed by the domain experts.
Keywords: Semantic web of things, building information models, building topology, sensors and observations, smart homes, knowledge graphs, semantic applications
DOI: 10.3233/JIFS-219425
Journal: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-12, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]