Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Borse, Rushikesh; * | Das, Rochishnu | Dash, Devasish | Yadav, Akshay
Affiliations: Great Lakes Institute of Management, Chennai, Tamilnadu, India
Correspondence: [*] Corresponding author. Rushikesh Borse, Great Lakes Institute of Management, Chennai, Tamilnadu, 603102, India. E-mail: [email protected].
Abstract: In the wake of the contemporary competitive business landscape, the retention of employees has become one of the most important yet difficult tasks for any corporate. Retaining top-performing employees not only improves organizational performance but also reduces recruitment costs. In this study, the authors investigate the major drivers leading to employee attrition and using machine learning algorithms implemented on a well proven and validated IBM HR data set. Although the data set tags the samples for a target variable (attrited and non-attrited), the work presented in this paper comes up with another labelling (1. likely to leave, 2. On the verge of leaving, 3. will stay). The data set is evaluated over top 10 Machine learning algorithms and a competitive analysis is made between them based on various factors. The best model has shown a prediction accuracy of over 85% +. Managers are provided with insights and recommendations at the end that will help companies to proactively identify at-risk employees and implement effective retention strategies.
Keywords: Employee attrition, machine learning, early detection of attrition, artificial neural network
DOI: 10.3233/JIFS-219410
Journal: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-9, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]