Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Duvvuri, Kavya; * | Kanisettypalli, Harshitha | Masabattula, Teja Nikhil | Amudha, J. | Krishnan, Sajitha
Affiliations: Department of Computer Science & Engineering, Amrita School of Computing, Bengaluru, Amrita Vishwa Vidyapeetham, India
Correspondence: [*] Corresponding author. Kavya Duvvuri. E-mail: [email protected].
Abstract: Glaucoma is an eye disease that requires early detection and proper diagnosis for timely intervention and treatment which can help slow down further progression and to manage intraocular pressure. This paper aims to address the problem by proposing a novel approach that combines a model-based Reinforcement Learning (RL) approach, called DynaGlaucoDetect, with ocular gaze data. By leveraging the RL algorithms to simulate and predict the dynamics of glaucoma, a model-based approach can improve the accuracy and efficiency of glaucoma detection by enabling better preservation of visual health. The RL agent is trained using real experiences and synthetic experiences which are generated using the model-based algorithm Dyna-Q. Two different Q-table generation methods have been discussed: the Direct Synthesis Method (DSM) and the Indirect Synthesis Method (IdSM). The presence of glaucoma has been detected by comparing the reward score a patient obtains with the threshold values obtained through the performed experimentation. The scores obtained using DSM and IdSM have been compared to understand the learning of the agent in both cases. Finally, hyperparameter tuning has been performed to identify the best set of hyperparameters.
Keywords: Glaucoma detection, model-based RL, Dyna-Q algorithm, reward system
DOI: 10.3233/JIFS-219400
Journal: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-13, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]