Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Bisht, Akhilesha; b | Gupta, Deepaa; b; *
Affiliations: [a] Department of Computer Science and Engineering, Amrita School of Computing, Bangalore, India | [b] Amrita Vishwa Vidhyapeetham, Bangalore, India
Correspondence: [*] Corresponding author. Deepa Gupta. E-mail: [email protected].
Abstract: Neural Machine Translation (NMT) for low resource languages is a challenging task due to unavailability of large parallel corpus. The efficacy of Transformer based NMT models largely depends on scale of the parallel corpus and the configuration of hyperparameters implemented during model training. This study aims to delve into and elucidate the impact of hyperparameters on the performance of NMT models for low resource languages. To accomplish this, a series of experiments are conducted using an open-source Hindi-Kangri corpus to train both supervised and semi-supervised NMT models. Throughout the experimentation process, a significant number of discrepancies were identified within the data-set, necessitating manual correction. The best translation performance evaluated with respect to the metrics such as BLEU (0–1), SacreBLEU (0–100), Chrf (0–100), Chrf+ (0–100), Chrf++ (0–100) and TER (%) is (0.15, 14.98, 41.43, 41.49, 38.77, 68.20) for Hindi to Kangri direction, and (0.283, 28.17, 49.71, 50.64, 48.63, 51.25) for Kangri to Hindi direction.
Keywords: Neural machine translation, low resource language, low resource MT, transformers, semi-supervised MT, Kangri, natural language processing
DOI: 10.3233/JIFS-219384
Journal: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-13, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]