Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Lugo-Torres, Gerardo | Valdez-Rodríguez, José E.; * | Peralta-Rodríguez, Diego A.
Affiliations: Computer Research Center, Instituto Politécnico Nacional, Mexico City, Mexico
Correspondence: [*] Corresponding author. José E. Valdez-Rodríguez, Computer Research Center, Instituto Politécnico Nacional, Mexico City, Mexico. E-mail: [email protected].
Abstract: The use of generative models in image synthesis has become increasingly prevalent. Synthetic medical imaging data is of paramount importance, primarily because medical imaging data is scarce, costly, and encumbered by legal considerations pertaining to patient confidentiality. Synthetic medical images offer a potential answer to these issues. The predominant approaches primarily assess the quality of images and the degree of resemblance between these images and the original ones employed for their generation.The central idea of the work can be summarized in the question: Do the performance metrics of Frechet Inception Distance(FID) and Inception Score(IS) in the Cycle-consistent Generative Adversarial Networks (CycleGAN) model are adequate to determine how real a generated chest x-ray pneumonia image is? In this study, a CycleGAN model was employed to produce artificial images depicting 3 classes of chest x-ray pneumonia images: general(any type), bacterial, and viral pneumonia. The quality of the images were evaluated assessing and contrasting 3 criteria: performance metric of CycleGAN model, clinical assessment of respiratory experts and the results of classification of a visual transformer(ViT). The overall results showed that the evaluation metrics of the CycleGAN are insufficient to establish realism in generated medical images.
Keywords: Synthetic chest x-ray, cycle generative adversarial network, pneumonia, image-to-image translation, visual transformer
DOI: 10.3233/JIFS-219373
Journal: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-11, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]