Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Soft Computing Applications
Guest editors: Valentina Emilia Balas
Article type: Research Article
Authors: Wu, Jimmy Ming-Taia | Tsai, Meng-Hsiunb; * | Li, Tu-Weib | Pirouz, Matinc
Affiliations: [a] College of Computer Science and Engineering, Shandong University of Science and Technology, Jinan, China | [b] Department of Management Information Systems, National Chung Hsing University, Taichung City, Taiwan | [c] Department of Computer Science, California State University, Fresno, CA, USA
Correspondence: [*] Corresponding author. Meng-Hsiun Tsai, Department of Management Information Systems, National Chung Hsing University, Taichung City, Taiwan. E-mail: [email protected].
Abstract: Estimating similarity using multiple similarity measures or machine learning prediction models is a popular solution to the link prediction problem. The Relation Pattern Deep Learning Classification (RPDLC) technique is proposed in this study, and it is based on multiple neighbor-based similarity metrics and convolution neural networks. The RPDLC first calculates the characteristics for a pair of nodes using neighbor-based metrics and impact nodes. Second, the RPDLC creates a heat map using node characteristics to assess the similarity of the nodes’ connection patterns. Third, the RPDLC uses convolution neural network architecture to build a prediction model for missing relationship prediction. On three separate social network datasets, this method is compared to other state-of-the-art algorithms. On all three datasets, the suggested method achieves the greatest AUC, hovering around 99 percent. The use of convolution neural networks and features via relational patterns to create a prediction model are the paper’s primary contributions.
Keywords: Link prediction problem, convolution neural network, relation pattern, social network
DOI: 10.3233/JIFS-219316
Journal: Journal of Intelligent & Fuzzy Systems, vol. 43, no. 2, pp. 2167-2178, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]