Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Recent Advances in Language & Knowledge Engineering
Guest editors: David Pinto, Beatriz Beltrán and Vivek Singh
Article type: Research Article
Authors: Tahir, Bilal | Mehmood, Muhammad Amir; *
Affiliations: Al-Khawarizmi Institute of Computer Science, University of Engineering and Technology, Lahore, Pakistan
Correspondence: [*] Corresponding author. Muhammad Amir Mehmood, Al-Khawarizmi Institute of Computer Science, University of Engineering and Technology, Lahore, Pakistan. E-mail: [email protected].
Abstract: The confluence of high performance computing algorithms and large scale high-quality data has led to the availability of cutting edge tools in computational linguistics. However, these state-of-the-art tools are available only for the major languages of the world. The preparation of large scale high-quality corpora for low-resource language such as Urdu is a challenging task as it requires huge computational and human resources. In this paper, we build and analyze a large scale Urdu language Twitter corpus Anbar. For this purpose, we collect 106.9 million Urdu tweets posted by 1.69 million users during one year (September 2018-August 2019). Our corpus consists of tweets with a rich vocabulary of 3.8 million unique tokens along with 58K hashtags and 62K URLs. Moreover, it contains 75.9 million (71.0%) retweets and 847K geotagged tweets. Furthermore, we examine Anbar using a variety of metrics like temporal frequency of tweets, vocabulary size, geo-location, user characteristics, and entities distribution. To the best of our knowledge, this is the largest repository of Urdu language tweets for the NLP research community which can be used for Natural Language Understanding (NLU), social analytics, and fake news detection.
Keywords: Social media analytic, Urdu Language corpus, large scale repository, text corpus, regional languages corpora
DOI: 10.3233/JIFS-219266
Journal: Journal of Intelligent & Fuzzy Systems, vol. 42, no. 5, pp. 4789-4800, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]