Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Recent Advances in Language & Knowledge Engineering
Guest editors: David Pinto, Beatriz Beltrán and Vivek Singh
Article type: Research Article
Authors: Ahmed, Usmana | Lin, Jerry Chun-Weia | Srivastava, Gautamb; c
Affiliations: [a] Department of Computer Science, Electronic Engineering and Mathematical Science, Western Norway University of Applied Sciences, Bergen, Norway | [b] Department of Mathematics & Computer Science, Brandon University, Brandon, Canada | [c] Research Centre for Interneural Computing, China Medical University, Taiwan
Correspondence: [*] Corresponding author. Jerry Chun-Wei Lin, Department of Computer Science, Electronic Engineering and Mathematical Science, Western Norway University of Applied Sciences, Bergen, Norway. E-mail: [email protected].
Abstract: Deep learning methods have led to the state-of-the-art medical applications, such as image classification and segmentation. The data-driven deep learning application can help stakeholders for further collaboration. However, limited labeled data set limits the deep learning algorithms to be generalized for one domain into another. To handle the problem, meta-learning helps to solve this issue especially it can learn from a small set of data. We proposed a meta-learning-based image segmentation model that combines the learning of the state-of-the-art models and then used it to achieve domain adoption and high accuracy. Also, we proposed a prepossessing algorithm to increase the usability of the segment part and remove noise from the new test images. The proposed model can achieve 0.94 precision and 0.92 recall. The ability is to increase 3.3% among the state-of-the-art algorithms.
Keywords: Meta-learning, transfer learning, feature extraction, classification, segmentation
DOI: 10.3233/JIFS-219221
Journal: Journal of Intelligent & Fuzzy Systems, vol. 42, no. 5, pp. 4307-4313, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]