Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Wu, Zhao | Jiang, Feng*; | Cao, Rui
Affiliations: School of Computer and Information Engineering, Central South University of Forestry and Technology, Changsha, China
Correspondence: [*] Corresponding author. Feng Jiang. E-mail: [email protected].
Abstract: The rapid and effective identification of leaf diseases of woody fruit plants can help fruit farmers prevent and cure diseases in time to improve fruit quality and minimize economic losses, which is of great significance to fruit planting. In recent years, deep learning has shown its unique advantages in image recognition. This paper proposes a new type of network based on deep learning image recognition method to recognize leaf diseases of woody fruit plants. The network merges the output of the convolutional layer of ResNet101 and VGG19 to improve the feature extraction ability of the entire model. It uses the transfer learning method to partially load the trained network weights, reducing model training parameters and training time. In addition, an attention mechanism is added to improve the efficiency of network information acquisition. Meanwhile, dropout, L2 regularization, and LN are used to prevent over-fitting, accelerate convergence, and improve the network’s generalization ability. The experimental results show that the overall accuracy of woody fruit plant leaf diseases identification based on the model proposed in this paper is 86.41%. Compared with the classic ResNet101, the accuracy is improved by 1.71%, and the model parameters are reduced by 96.63%. Moreover, compared with the classic VGG19 network, the accuracy is improved by 2.08%, and the model parameters are reduced by 96.42%. After data set balancing, the overall identification accuracy of woody fruit plant leaf diseases based on the model proposed in this paper can reach 86.73%.
Keywords: Model fusion, transfer learning, neural network, image recognition
DOI: 10.3233/JIFS-213388
Journal: Journal of Intelligent & Fuzzy Systems, vol. 43, no. 4, pp. 4133-4144, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]