Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Haouassi, Hichem; * | Mahdaoui, Rafik | Chouhal, Ouahiba | Bekhouche, Abdelaali
Affiliations: Department of Mathematics and Computer Science, ICOSI Lab, University Abbas Laghrour, Khenchela, Algeria
Correspondence: [*] Corresponding author. Hichem Haouassi, Department of Mathematics and computer science, ICOSI Lab, University Abbas Laghrour, Khenchela, Algeria. E-mail: [email protected].
Abstract: Many machine learning-based methods have been widely applied to Coronary Artery Disease (CAD) and are achieving high accuracy. However, they are black-box methods that are unable to explain the reasons behind the diagnosis. The trade-off between accuracy and interpretability of diagnosis models is important, especially for human disease. This work aims to propose an approach for generating rule-based models for CAD diagnosis. The classification rule generation is modeled as combinatorial optimization problem and it can be solved by means of metaheuristic algorithms. Swarm intelligence algorithms like Equilibrium Optimizer Algorithm (EOA) have demonstrated great performance in solving different optimization problems. Our present study comes up with a Novel Discrete Equilibrium Optimizer Algorithm (NDEOA) for the classification rule generation from training CAD dataset. The proposed NDEOA is a discrete version of EOA, which use a discrete encoding of a particle for representing a classification rule; new discrete operators are also defined for the particle’s position update equation to adapt real operators to discrete space. To evaluate the proposed approach, the real world Z-Alizadeh Sani dataset has been employed. The proposed approach generate a diagnosis model composed of 17 rules, among them, five rules for the class “Normal” and 12 rules for the class “CAD”. In comparison to nine black-box and eight white-box state-of-the-art approaches, the results show that the generated diagnosis model by the proposed approach is more accurate and more interpretable than all white-box models and are competitive to the black-box models. It achieved an overall accuracy, sensitivity and specificity of 93.54%, 80% and 100% respectively; which show that, the proposed approach can be successfully utilized to generate efficient rule-based CAD diagnosis models.
Keywords: Coronary artery disease, medical diagnosis, machine learning, rule-based diagnosis, rule discovery, population-based optimization, discrete equilibrium optimization algorithm
DOI: 10.3233/JIFS-213257
Journal: Journal of Intelligent & Fuzzy Systems, vol. 43, no. 3, pp. 2315-2331, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]