Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Fathabadi, Fatemeh Rashidia; * | Grantner, Janos L.a | Shebrain, Saad A.b | Abdel-Qader, Ikhlasa
Affiliations: [a] Electrical and Computer Engineering Department, Western Michigan University, USA | [b] Department of Surgery, of the Homer Stryker M.D. School of Medicine, Western Michigan University, USA
Correspondence: [*] Corresponding author. Fatemeh Rashidi Fathabadi, Electrical and Computer Engineering Department, Western Michigan University, USA. [email protected].
Abstract: Recent developments in deep learning can be used in skill assessments for laparoscopic surgeons. In Minimally Invasive Surgery (MIS), surgeons should acquire many skills before carrying out a real operation. The Laparoscopic Surgical Box-Trainer allows surgery residents to train on specific skills that are not traditionally taught to them. This study aims to automatically detect the tips of laparoscopic instruments, localize a point, evaluate the detection accuracy to provide valuable assessment and expedite the development of surgery skills and assess the trainees’ performance using a Multi-Input-Single-Output Fuzzy Logic Supervisor system. The output of the fuzzy logic assessment is the performance evaluation for the surgeon, and it is quantified in percentages. Based on the experimental results, the trained SSD Mobilenet V2 FPN can identify each instrument at a score of 70% fidelity. On the other hand, the trained SSD ResNet50 V1 FPN can detect each instrument at the score of 90% fidelity, in each location within a region of interest, and determine their relative distance with over 65% and 80% reliability, respectively. This method can be applied in different types of laparoscopic tooltip detection. Because there were a few instances when the detection failed, and the system was designed to generate pass-fail assessment, we recommend improving the measurement algorithm and the performance assessment by adding a camera to the system and measuring the distance from multiple perspectives.
Keywords: Deep learning, laparoscopic surgical box-trainer, laparoscopic surgical instrument detection, fuzzy logic-based performance assessment, minimally invasive surgery, CNN
DOI: 10.3233/JIFS-213243
Journal: Journal of Intelligent & Fuzzy Systems, vol. 43, no. 4, pp. 4741-4756, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]