Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Gnanavel, V. K.a; * | Baskaran, J.b
Affiliations: [a] Department of Computer Science and Engineering, PSG Institute of Technology and Applied Research, Coimbatore | [b] Department of Electrical and Electronics Engineering, PSG Institute of Technology and Applied Research, Coimbatore
Correspondence: [*] Corresponding author. V.K. Gnanavel, Associate Professor, Department of Computer Science and Engineering, PSG Institute of Technology and Applied Research, Coimbatore. E-mail: [email protected].
Abstract: Power quality disturbance (PQD) defines the presence of inconsistencies that occur in the usual wave shapes of voltage and current signals. Power quality is considered the main challenge for power industry with the increase in dynamic load and highly subtle electronic devices. Besides, the islanding events, particularly unintended islanding, grasp significant challenges and it needs to be identified at the early stage. Islanding is an anomalousstate in the power system, where the distributed generators (DGs) are placed on supplying electrical energy to the local load even after the shortage of the major grid. Therefore, it is essential to identify and differentiate the PQ events and islanding events in ensuring pollution-free power, equipment, and labor safety. With this motivation, this paper presents an automated optimal deep learning based islanding detection (AODL-ID) technique. The proposed AODL-ID technique involves three major stages namely decomposition, classification, and hyperparameter tuning. Firstly, an empirical mode decomposition (EMD) approach is utilized to decompose the basic signals from the polluted signals. In addition, bidirectional gated recurrent neural network (BiGRNN) technique is employed for the classification of islanding and non-islanding PQ events in the wind energy penetrated DG systems by means of features (Voltage and current (RMS, half-cycle, peak and fundamental) Frequency. Power Factor / Cos Phi. Power and energy (active, reactive, harmonic, apparent)). Since the hyperparameters play a significant role in overall classification performance, the hyperparameter tuning of the BiGRNN model takes place using chaotic crow search algorithm (CCSA). To examine the enhanced classification outcome of the AODL-ID technique, a set of experimental analyses is carried out and the outcomes are investigated interms of various evaluation metrics. The simulation outcomes highlighted the supremacy of the AODL-ID technique over the compared techniques.
Keywords: Distributed generation systems, Islanding detection, power quality, deep learning, parametertuning, electrical energy
DOI: 10.3233/JIFS-213129
Journal: Journal of Intelligent & Fuzzy Systems, vol. 43, no. 4, pp. 4071-4081, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]