Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Kaur, Gaganjot; * | Gupta, Prinima
Affiliations: Manav Rachna University, Faridabad, India
Correspondence: [*] Corresponding author. Gaganjot Kaur, Assistant Professor, Manav Rachna University, Faridabad, India. E-mail: [email protected].
Abstract: In today’s world, Software-Defined Networking (SDN) plays a significant role in the advancement of next-generation network architecture that offers vast control to the network operators. However, the control layer is vulnerable to Distributed Denial of Service (DDoS) attacks where DDoS is one of the most powerful and devastating cyber-attacks. Thus, the development of a DDoS attack detection mechanism is very essential since these kinds of attacks have a direct impact on the overall performance of the SDN. In this paper, a new robust Tuned support vector machine-based DDoS attack detection methodology has been proposed to categorize the benign traffic from DDoS attack traffic on the SDN. Primarily, the network is created with controller and OpenFlow switch and the communication can be carried out through secure channels among different benign users and also attackers. Afterward, the multi-characteristic values are extracted by the effective extraction strategy which consists of the six-tuple characteristic values matrix. Finally, the tuned classifier has been implemented with the aid of optimization algorithm for differentiating the abnormal traffic and the normal traffic. The performance results manifest that the proposed detection framework achieves a higher accuracy of 98% and precision of 99% when compared with existing classifiers.
Keywords: Denial of service attack, cyber security, hybrid classifier, software-defined network, quality of service, machine learning, optimization algorithm
DOI: 10.3233/JIFS-212946
Journal: Journal of Intelligent & Fuzzy Systems, vol. 43, no. 3, pp. 2693-2710, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]