Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Haque, Md. Rakibula | Mishu, Sadia Zamana | Palash Uddin, Md.b; * | Al Mamun, Md.a
Affiliations: [a] Department of Computer Science and Engineering, Rajshahi University of Engineering & Technology, Bangladesh | [b] Department of Computer Science and Engineering, Hajee Mohammad Danesh Science and Technology University, Bangladesh
Correspondence: [*] Corresponding author. Md. Palash Uddin, Department of Computer Science and Engineering, Hajee Mohammad Danesh Science and Technology University, Bangladesh. E-mail: [email protected].
Abstract: Hyperspectral Image (HSI) is usually composed of hundreds of capturing wavelength bands, which not only increase the size of the HSI rapidly but also impose various obstacles in classifying the objects accurately. Moreover, the traditional machine learning schemes utilize only the spectral features for HSI classification, which, therefore, neglect the spatial features that have a significant impact on the classification improvement. To address the aforementioned issues, in this paper, we propose to employ the principal component analysis (PCA), the baseline feature extraction method, and a thoughtfully designed stacked autoencoder, a deep learning-based feature extraction approach, for reducing the high dimensionality of the HSI and then propose a novel lightweight 3D-2D convolutional neural network (CNN) framework to concurrently exploit both spatial and spectral features from the dimensionality-reduced HSI for classification. In particular, PCA and stacked autoencoder are applied to reduce the high dimensionality of the original HSI and then the proposed 3D-2D CNN provides a combination of 3D and 2D convolution operations to extract the subtle spatial and spectral features for efficient classification. We well-adjust the proposed 3D-2D CNN architecture, and perform extensive experiments on three benchmark HSI datasets and compare our approach with the state-of-the-art classical and deep learning methods. Experimental results illustrate that we have achieved an overall accuracy of 99.73%, 99.90%, and 99.32% on Indian Pines, Pavia University, and Kennedy Space Center datasets, respectively, which outperform the classical machine learning and independent 2D and 3D CNN-based state-of-the-art methods.
Keywords: Feature extraction, principal component analysis, deep learning, stacked autoencoder, classification, convolutional neural network
DOI: 10.3233/JIFS-212829
Journal: Journal of Intelligent & Fuzzy Systems, vol. 43, no. 1, pp. 1241-1258, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]