Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Arya, R.; * | Vimina, E.R.
Affiliations: Department of Computer Science & IT, School of Artsand Sciences, Amrita Vishwa Vidyapeetham- Kochi Campus, India
Correspondence: [*] Corresponding author. R. Arya. Department of Computer Science &IT, School of Arts and Sciences, Amrita Vishwa Vidyapeetham- Kochi Campus, India. E-mail: [email protected].
Abstract: Local feature descriptors are efficient encoders for capturing repeated local patterns in many of the computer vision applications. Majority of such descriptors consider only limited local neighborhood pixels to encode a pattern. One of the major issues while considering more number of neighborhood pixels is that it increases the dimensionality of the feature descriptor. The proposed descriptor addresses these issues by describing an effective encoding pattern with optimal feature vector length. In this paper, we have proposed Local Neighborhood Gradient Pattern (LNGP) for Content-Based Image Retrieval (CBIR) in which the relationship between a set of neighbours and the centre pixel is considered to obtain a compact 8-bit pattern in the respective pixel position. The relationship of the gradient information of immediate, next-immediate, and diagonal neighbours with the centre pixel is considered for pattern formation, and thus the local information based on pixels in three directions are captured. The experiments are conducted on benchmarked image retrieval datasets such as Wang’s 1K, Corel 5K, Corel 10K, Salzburg (Stex), MIT-Vistex, AT & T, and FEI datasets and it is observed that the proposed descriptor yields average precision of 71.88%, 54.57%, 40.66%, 71.85%, 86.12%, 82.54%, and 68.54% respectively in the mentioned datasets. The comparative analysis of the recent descriptors indicates that the proposed descriptor performs efficiently in CBIR applications.
Keywords: Local binary patterns, intensity gradient, feature extraction, image retrieval, image descriptor
DOI: 10.3233/JIFS-212604
Journal: Journal of Intelligent & Fuzzy Systems, vol. 43, no. 4, pp. 4477-4499, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]