Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Senthil Vadivu, M.a; * | Kavithaa, G.b
Affiliations: [a] Department of Electronics and Communication Engineering, Sona College of Technology, Salem, Tamilnadu, India | [b] Department of Electronics and Communication Engineering, Government College of Engineering, Salem, Tamilnadu, India
Correspondence: [*] Corresponding author. M. Senthil Vadivu, E-mail: [email protected].
Abstract: Fetal Electrocardiogram (ECG) signal extraction from non-invasive abdominal ECG signal is one of the important clinical practices followed to observe the fetal health state. Information about heart growth and health conditions of a fetus can be observed from fetal ECG signals. However, acquiring fetal ECG from abdominal ECG signals is still considered as a challenging task in biomedical analysis. This is mainly due to corrupted high amplitude maternal ECG signals, low signal to noise ratio of fetal ECG signal, difficulties in reduction of QRS (Q wave, R wave, S wave) complexities, fetal ECG signal superimposed characteristics, other motion, and electromyography artifacts. To reduce these conventional challenges, in fetal ECG analysis of a novel Conditional Generative adversarial network (CGAN) is introduced in this research work to extract the fetal ECG signal. The proposed classification model was classified efficiently in fetal ECG signals from non-invasive abdominal ECG signals. The experimental analysis demonstrates that the proposed network model provides better results in terms of sensitivity, specificity, and accuracy compared to the conventional fetal ECG extraction models like singular value decomposition, periodic component analysis, and Adaptive neuro-fuzzy inference system.
Keywords: Fetal ECG, generative adversarial networks (GAN), classification
DOI: 10.3233/JIFS-212465
Journal: Journal of Intelligent & Fuzzy Systems, vol. 43, no. 1, pp. 801-811, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]