Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Dhamodharavadhani, S. | Rathipriya, R.; *
Affiliations: Department of Computer Science, Periyar University, Salem, Tamil Nadu, India
Correspondence: [*] Corresponding author. R. Rathipriya. E-mail: [email protected].
Abstract: This paper aims to develop the methodology for enhancing the regression models using Cluster based sampling techniques (CST) to achieve high predictive accuracy and can also be used to handle large datasets. Hard clustering (KMeans Clustering) or Soft clustering (Fuzzy C-Means) to generate samples called clusters, which in turn is used to generate the Local Regression Models (LRM) for the given dataset. These LRMs are used to create a Global Regression Model. This methodology is known as Enhanced Regression Model (ERM). The performance of the proposed approach is tested with 5 different datasets. The experimental results revealed that the proposed methodology yielded better predictive accuracy than the non-hybrid MLR model; also, fuzzy C-Means performs better than the KMeans clustering algorithm for sample selection. Thus, ERM has potential to handle data with uncertainty and complex pattern and produced a high prediction accuracy rate.
Keywords: Clustering, KMeans, fuzzy c-means, multiple linear regression, regression, sampling methods
DOI: 10.3233/JIFS-211736
Journal: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 2, pp. 3059-3069, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]