Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Tan, Chaoa; b | Liu, Jiea; b; *
Affiliations: [a] Science and Parallel and Distributed Processing Laboratory, National University of Defense Technology, Changsha, China | [b] Laboratory of Software Engineering for Complex Systems, National University of Defense Technology, Changsha, China
Correspondence: [*] Corresponding author. Jie Liu, National University of Defense Technology China. E-mail: [email protected].
Abstract: The prime focus of knowledge distillation (KD) seeks a light proxy termed student to mimic the outputs of its heavy neural networks termed teacher, and makes the student run real-time on the resource-limited devices. This paradigm requires aligning the soft logits of both teacher and student. However, few doubts whether the process of softening the logits truly give full play to the teacher-student paradigm. In this paper, we launch several analyses to delve into this issue from scratch. Subsequently, several simple yet effective functions are devised to replace the vanilla KD. The ultimate function can be an effective alternative to its original counterparts and work well with other skills like FitNets. To claim this point, we conduct several visual tasks on individual benchmarks, and experimental results verify the potential of our proposed function in terms of performance gains. For example, when the teacher and student networks are ShuffleNetV2-1.0 and ShuffleNetV2-0.5, our proposed method achieves 40.88%top-1 error rate on Tiny ImageNet.
Keywords: Neural network compression, knowledge distillation, knowledge transfer
DOI: 10.3233/JIFS-211549
Journal: Journal of Intelligent & Fuzzy Systems, vol. 42, no. 3, pp. 2247-2259, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]