Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Chen, Yonga; * | Zhang, Tianbaoa | Wang, Ruojunb | Cai, Leia
Affiliations: [a] China Construction Third Engineering Bureau Infrastructure Construction Investment Co., LTD, Wuhan, PR China | [b] Northeastern University, Shenyang, PR China
Correspondence: [*] Corresponding author. Yong Chen, China Construction Third Engineering Bureau Infrastructure Construction Investment Co., LTD, Wuhan, PR China. E-mail: [email protected].
Abstract: The failure of complex engineering systems is easy to lead to disastrous consequences. To prevent the failure, it is necessary to model complex engineering systems using probabilistic techniques with limited data which is a major feature of complex engineering systems. It is a good choice to perform such modeling using Bayesian network because of its advantages in probabilistic modeling. However, few Bayesian network structural learning algorithms are designed for complex engineering systems with limited data. Therefore, an algorithm for learning the Bayesian network structure of them should be developed. Based on the process of self-purification of water, a complex engineering system is segmented into three components according to the degree of difficulty in solving them. And then a Bayesian network learning algorithm with three components (TC), including PC algorithm, MIK algorithm which is originated by the paper through combining Mutual Information and K2 algorithm, and the Hill-Climbing method, is developed, i.e. TC algorithm. To verify its effectiveness, TC algorithm, K2 algorithm, and Max-Min Hill-Climbing are respectively used to learn Alarm network with different sizes of samples. The results imply that TC algorithm has the best performance. Finally, TC algorithm is applied to study tank spill accidents with 220 samples.
Keywords: Bayesian network structural learning, algorithm, complex engineering systems, failure probability
DOI: 10.3233/JIFS-211354
Journal: Journal of Intelligent & Fuzzy Systems, vol. 42, no. 3, pp. 1991-2004, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]