Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Xu, Xinlianga | Yan, Fub; c; *
Affiliations: [a] College of Economics and Management, Northeast Agricultural University, Harbin, China | [b] Guizhou Provincial Key Laboratory of Public Big Data, Guizhou University, Guiyang, China | [c] Guizhou Province Big Data Industry Development and Application Research Institute, Guiyang, China
Correspondence: [*] Corresponding author. Fu Yan, E-mail: [email protected].
Abstract: Autonomous groups of particles swarm optimization (AGPSO), inspired by individual diversity in biological swarms such as insects or birds, is a modified particle swarm optimization (PSO) variant. The AGPSO method is simple to understand and easy to implement on a computer. It has achieved an impressive performance on high-dimensional optimization tasks. However, AGPSO also struggles with premature convergence, low solution accuracy and easily falls into local optimum solutions. To overcome these drawbacks, random-walk autonomous group particle swarm optimization (RW-AGPSO) is proposed. In the RW-AGPSO algorithm, Levy flights and dynamically changing weight strategies are introduced to balance exploration and exploitation. The search accuracy and optimization performance of the RW-AGPSO algorithm are verified on 23 well-known benchmark test functions. The experimental results reveal that, for almost all low- and high-dimensional unimodal and multimodal functions, the RW-AGPSO technique has superior optimization performance when compared with three AGPSO variants, four PSO approaches and other recently proposed algorithms. In addition, the performance of the RW-AGPSO has also been tested on the CEC’14 test suite and three real-world engineering problems. The results show that the RW-AGPSO is effective for solving high complexity problems.
Keywords: Autonomous groups of particle swarm optimization, particle swarm optimization, levy flights, dynamically changing weight, function optimization
DOI: 10.3233/JIFS-210867
Journal: Journal of Intelligent & Fuzzy Systems, vol. 42, no. 3, pp. 1519-1545, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]