Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Vaiyapuri, Thavavela; * | Alaskar, Hayaa | Sbai, Zohraa; c | Devi, Shrib
Affiliations: [a] Computer Science Department, College of Computer Engineering & Sciences, Prince Sattam bin Abdulaziz University, Saudi Arabia | [b] Centre for Advanced Data Science, Vellore Institute of Technology, Chennai, India | [c] National Engineering School of Tunis, Tunis El Manar University, Tunisia
Correspondence: [*] Corresponding author. Thavavel Vaiyapuri, College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University, Saudi Arabia. E-mail: [email protected].
Abstract: Medical images that are acquired with reduced radiation exposure or following the administration of imaging agents with a low dose, are often known to experience problems by the noise stemming from acquisition hardware as well as psychological sources. This noise can adversely affect the quality of diagnosis, but also prevent practitioners from computing quantitative functional information. With a view to overcoming these challenges, the current paper puts forward optimization of multi-objective for denoising medical images within the wavelet domain. This proposed technique entails the use of genetic algorithm (GA) to get the threshold optimized within the denoising framework of wavelets. Two purposes are associated with this technique: First, its ability to adapt with different noise types of noise in the image without requiring prior information about the imaging process per se. In addition, it balances relevant diagnostic details’ preservation against the reduction of noise by considering the optimization of the error factor of Liu and SNR as the foundation of objective function. According to the implementation of this method on magnetic resonance (MR) and ultrasound (US) images of the brain, a better performance has been observed as compared to the existing wavelet-based denoising methods with regard to quantitative and qualitative metrics.
Keywords: Medical image denoising, rician noise, speckle noise, wavelet thresholding, threshold optimization, optimization techniques, multi-objective optimization
DOI: 10.3233/JIFS-210429
Journal: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 1, pp. 1575-1588, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]